How (and Why) to read firewall logs

Bob Konigsberg, NCS Pearson Inc.

© Bob Konigsberg, 2001

Bobk@networkeval.com
You probably want to know what attempts are being made to break into, or out of your network.  Reading and analyzing firewall logs can provide some of this information.  Firewall logs can also help identify misconfigured systems both inside and outside your network.  Firewall logs can also show the presence of rogue software on your network.  This includes both successful intrusions that are trying to get out to perform more damage, and spyware, which is trying to report on your users browsing habits.

Except where specified, this paper makes the following assumptions:

· The firewall rules deny all packets inbound or outbound unless specifically allowed.  

· Those specifically allowed are a list of intended (authorized) Internet services defined in two lists: outbound services (e.g. Web Browsing), and inbound services (e.g. email).  See Appendix C for the permission lists.  

· Only dropped packets are logged.

· The logging and analysis environment is HP-UX 10.0, so there are some details in the scripts that are HP-UX specific (Exact location and names of some files).

· The firewall is a Cisco Pix, although some of the details (actual firewall name, domain, real IP addresses, etc.) have been edited in the interest of security and brevity.

· All examples will be drawn from an edited extract of real logs in Appendix B.

In this paper, we assume that you have your firewall logs stored in plain text, or that you can convert them into that form.  We make extensive use of common Unix utilities to separate different types of log entries into common groups, which can be further processed to identify specific patterns of potential attacks.  By this, we mean to group all incoming TCP reports, or outbound ICMP reports, since they usually have a common format.  If this is not the case, e.g. incoming TCP reports come in two different formats, then we’ll show how to get the desired data together so that you, the log analyst, can make a meaningful interpretation of the data.  If you are not familiar with Unix utilities, see Appendix A, which explains how they are used in this paper.  Windows ports of these utilities are also available.

The first task in log analysis is to baseline your network.  This entails watching and analyzing your firewall logs to find out what's normal, and what's proper.  Since someone could well be trying to compromise your network when you start learning, this has to be allowed for in your own learning curve.

After extracting report data, you will be in a position to analyze the results. Find out who’s trying to break in, and who is trying (and failing) to get out.  You’ll also find evidence of systems that were actually trying to conduct business, but due to a misconfiguration, hit the firewall instead.  Log analysis is easier when you know exactly what kind of traffic is trying to pass through your firewall.  We offer a number of sources of information to allow you to identify the exact nature of the packets.

Once you know what your network baseline looks like, the next task is to address issues raised by the log entries.  In most cases, the cost (your time) may be too high to address everything you see in the logs, so you’ll have to prioritize. Obvious break-in attempts will have to be addressed, as will signs of worm propagation and other infestations.  Misconfigured systems should be addressed.  There will be a lot of noise and nuisance traffic as well.  Learn to distinguish between minor nuisances (casual sniping), noise (irrelevant traffic) and actual problem traffic.

If your firewall logs are not providing enough information to allow thorough analysis, we discuss some ways in which firewall configurations and logging levels can be adjusted to provide better data.  Additionally, we discuss best practices to automate portions of the procedures, and to make sure that your logging data is well maintained. Some scripts to do these tasks are available on the web since they’re too lengthy to explore in detail here.

How do we want to do this? What might we find?

The best way to read firewall logs is by looking for different types of activity.  There are several different targets for analysis.  The direction of the packets (inbound vs. outbound), protocol (TCP, UDP, or ICMP) and the port (TCP/UDP) or type (ICMP), and the source and destination address(es), will determine how you should treat each item.  Each item may be considered as any (or more) of the following: An outright scan, a mapping effort, a worm attack, a minor nuisance, or a VPN user who forgot to login first.  Individual packets may or may not tell the whole story; you may have to dig into the logs for similar events to build up an overall picture.

An examination of the logs will reveal a number of different issues.  Most are not going to be sinister. They fall into groups like noise (no intention whatever), “ankle-biting” (minor nuisance), unauthorized applications (track them down at your leisure), misconfigured systems (not doing their job), and actual attacks (take a careful look now).

In the case of a scan, you might see several patterns.  A TCP scan of all (or well known) port numbers across a single address or range of destination addresses is usually hostile.  There are some exceptions, such as when a corporate parent orders an audit and scans all subsidiaries without notifying them.  A scan of a wide range of addresses with destination ports commonly used by HTTP (80, 81, 82, 88, 800, 888, 8000, 8008, 8080, 8888, etc.) is almost certainly a fishing expedition.  The sender is either looking for web sites to attack, or sources of information (e.g. Industrial Espionage).  Attacks like this should be used as a reminder to your server and web administrators to keep their patches up to date.  An SNMP (UDP 161) scan would likely be someone with plans to map your network using the standard Internet management protocol and default or commonly used community strings.  Careful examination of a seemingly sequential scan of IP addresses can be extremely helpful.  A series of rejected scans for a particular port (e.g. Telnet) with one or more addresses missing from a sequential list might indicate that some of the intruder’s traffic is actually getting through. Unless it’s supposed to be that way, this would be an indication that a review of the set of firewall rules would be in order.

Normal, (but irritating) behavior of known applications can cause a fair number of log entries as well.  Here are three examples:

· Microsoft Exchange, for example, will frequently attempt to contact other mail servers on port 137 (NetBIOS Name) when sending email via SMTP.  

· When an SMTP server is Unix based, it will frequently also send an Auth/Ident request (TCP 113).  This is usually innocent, but if your mail server doesn’t support it, it serves no purpose to let it pass.

· Outlook 98 will attempt to contact an exchange server on port 135.  If this isn’t allowed through the firewall, it’s usually because the end user forgot to set up a VPN session first.  A quick look for the source IP address in the VPN logs should confirm whether this is the case
.

Other incoming packets (AOL Instant Messenger, IRC, ICQ, etc.) might be intended for a friendly chat. On the other hand, it might be an attempt to use “Social Engineering” to get internal information out of one of your users, download something harmful to a local workstation, or exploit a known vulnerability in that application or protocol.  If it’s TCP or UDP in the 6770 port range, it’s probably just someone trying to listen to the radio over the Internet.  Scans in the NetBIOS range (UDP 137, 138, and especially TCP 139) are often looking for systems to compromise or forgetful VPN users with laptops configured for the internal network.  Other scans may be of remote control programs (PC Anywhere, Carbon Copy, Timbuktu, --all legit--, or Back Orifice, NetBus, SubSeven or other hacker tools and worms) which are trying to compromise your network in one way or another.  Other examples will have to be discovered on a case-by-case basis.

For outbound packets, log analysis is usually helpful in one of six common situations:: 

· There is already a worm on your network, and it’s trying to get out to other systems, or to notify its handlers.  

· Someone on your network has rogue software (e.g. Doom, chat programs, etc.) which is/are not allowed.

· One or more systems is configured with an IP address for some server which is not correct (e.g. 192.158.x.y instead of 192.168.x.y) and instead of reaching the server, is following the default route out to the Internet. 

· Someone is trying to go to a web page on an oddball port, which is not supported by the firewall’s configuration policy or running an application not allowed by the security policy.  This is often unwittingly the case with advertising popups or banners.   Blocking these is useful in that most users appreciate fewer ads.

· One or more systems on your network have spyware running on it and it’s trying to send data to its owners. 
· Due to a misconfiguration error on the firewall itself a legitimate service is being denied Internet access.    If it’s a human user, they’ll usually be on the telephone to you first.  However, when the legitimate service is embedded in a system, it may take some time before anyone notices, in which case you may find it first in the firewall logs.

· A seventh (unlikely) reason is that someone on your network is trying to hack someone else’s network.

Regardless of the particulars, all of these log entries need to be examined in light of what meaning they have.  This is most easily done by extracting the data from the firewall logs in a format where like items are grouped together so that their common traits (and differences) can be analyzed. 

Firewall logs should be readable and accessible for report generation

For our purpose, the best format for firewall logs is in plain text.  This allows for the greatest flexibility in processing reports so as to obtain the information we want.  The simplest and most common way to get the logs in this format is to have the firewall send them to a syslog server.  Some firewalls already do this without having to use external utilities.  Virtually all Unix variations (SunOS, Solaris, HP-UX, AIX. Linux, FreeBSD, Irix, etc.) offer this service as part of the O/S.  For Windows platforms, there are a number of software vendors who offer add-on syslog servers.  If you use one of the latter, make sure that it writes clear text files.  Some vendor's products use a proprietary format, which is not easily readable by the Unix utilities.

Firewall logs should not be stored on the firewall itself, except as an emergency backup if the syslog server goes down.  If a skilled and motivated attacker 
compromises your firewall, the first thing they’re likely to do is to shut off or compromise the logs. It is important that all logs be sent to an internal (hopefully secured) server.

For system safety, it is highly recommended that the firewall logs be stored on their own disk partition, preferably their own disk device. By default, many firewalls install the logging on the default system drive.  So placing it on a separate partition will require a deliberate configuration change. 

The total amount of disk space you need will depend on the following factors:  

· How long you plan to store the logs, 

· How much material gets written to the disk during a normal day, 

· Whether or not you plan to compress files after a given period of time

· How many different systems are reporting to this syslog server. 

A safe bet is to project your requirements forward at least 6 months (the length of time a typical organization stores logs), and then double it.  Anything less than 4 Gigabytes will probably not be enough for any but small organizations.  

What constitutes a normal baseline for your network?

You’ll learn your normal baseline by studying your logs and chasing down everything that you don’t understand.  This can be time-consuming at first, but it has to be done if you’re to learn what the logs actually look like.  Of course, if you’re just starting out with this, you don’t actually know what’s normal, and what’s not.  In the next few paragraphs we’ll provide a few pointers as to what is considered “interesting” in log entries.

In the beginning, plan to spend an hour a day just watching the log go by (tail –f syslog.log | grep “firewall” works well), but do it in small chunks of time so as not to make your eyes glaze over.  One approach is to have the firewall logs continually passing by in a window, so that by just glancing at it from time to time, you’ll get comfortable with what you’re seeing.  When you see something odd, stop and investigate.  If you don’t have time for this, then make time in your schedule to investigate SOMETHING every day.

How do we tell what's normal and what's not?

In a word – patterns.  For inbound packets, common source addresses, common destination addresses, particular destination ports.  For example, is someone doing a port scan of a particular system or systems?  Is there a scan for the same port number over a widespread number of addresses? What is/are the port numbers being scanned? There are a number of sophisticated attacks and probes that manage to hide this kind of activity. That’s best left to an IDS (Intrusion Detection System) if you need rapid alerts, but to track these things as trends is well within the scope of log analysis.

Although we only use one small sample log (Appendix B), regular analyses of weeks worth of logs may be necessary to build up a better picture.

For outbound packets, (particularly dropped packets), are there common destination port numbers?  Do they come from one system or many?  Addressed to one system or many?  For example, ports 1755, 1975 and 2064 are usually advertising banners.  Unless something else unusual occurs related to them, they can be ignored.  Outbound SMTP traffic from systems other than known mail servers may reflect worms, or rogue (maybe Spam) email applications.

What are we looking for?

Attacks, probes (generally coming in from the outside) will usually be seen as inbound TCP or UDP packets.  Ping (ICMP) is also used for mapping networks.  Much of the time, the destination port will be a well-known service.

Rogue software - Unauthorized applications can cover a range like IRC, ICQ, AOL, Napster-like, etc.  Spyware (generally outbound) to some central server (TimeSink, Aureate/Radiate among others) which attempt to measure users surfing habits and then report on them to their respective owners.  Once in your systems, worms such as QAZ, also known as the Notepad virus will attempt to email notification of themselves to their creator, and open a remote access port.  Other worms will attempt to notify IRC groups of their existence and sometimes their availability.  These are just a few examples; the list is endless since new types are being continually created.

Spyware – One case is the TimeSink Adbot.  Once running, it will attempt to ping 149.1.1.1.  If it succeeds, then it proceeds to report on advertising banners that the viewer has seen.  By implication, it could also report on people's web surfing habits.  At one time, this software came with PKZip, MSNBC News Agent, and other "free" software.  Netscape Smart Download, Real Player, CosmicCursor and others have also been identified as being capable of the gathering and reporting of user habits.   Aureate/Radiate also embed DLL’s and registry entries to monitor advertising.  These are usually installed as part of “free” software paid for by advertising revenues.  To rid your machines of some of these infestations, get AdAware (Public Service freeware) from Lavasoft at http://www.lavasoft.de/aaw/index.html
Misconfigured systems (both inbound and outbound) frequently have a mistyped IP address in some configuration file.  Since most Internet-bound traffic follows the default route within an enterprise network, it’s not surprising that the packets end up following this to the firewall.  If the firewall is configured tightly enough, these mis-addressed packets are discarded and logged.  If the firewall allows all outbound traffic, then the attempted connections wind up as a log entry on someone else’s firewall as a potential intruder.  

How do we get this information in a form we can use?

There are several ways to process this information.  The best way, for purposes of illustration, is by using the common Unix utilities (Also available from MKS commercially for Windows platforms, and by some freeware distributions from Cygwin.com and Uwin.com.  There may be others.).  These offer a quick way of extracting useful information from log files. A combination of several of these utilities can perform a great deal of data extraction and summarization.  If you want to keep it at this level, then shell scripts, or PERL scripts are workable ways to go. The sample automated reports shown below just show an indication that there is something that needs investigating.  More specialized scripts are used for extracting specific data, but these are not usually necessary on a daily basis.

There are also commercial log analyzers on the market (Web Trends, Net Tracker, Proxy Reporter, and PrivateI among several others). These will analyze your firewall logs and provide reports for you.  However, if you don’t have a good understanding of what they’re looking for and how it’s done, then those reports will not be as useful as they could be.   

The following are some simplistic scripts designed to show way that data could be extracted and formatted.  A simplified version of a firewall log (seen in Appendix B) is used as an example.  Since the formats of some of the messages are different, it will be necessary to use different combinations and parameter values for the utilities for each different format.
  We start by separating inbound and outbound attempts by using grep to match patterns in files.

grep –i inbound sample.log > inbound.log

grep –I outbound sample.log > outbound.log

The sample above isn’t enough to narrow down because it contains many different types of reports, so we’ll pipe the grep output for “inbound” to grep again looking only for “TCP”.  The results would look like the example below:

grep –i inbound logfile | grep –i tcp

Inbound TCP connection denied src outside:62.224.141.203/1226 dst inside:192.168.87.172/23

Now we have only one type of entry.  But in real life, we’ll have tens of thousands or more to go through with hundreds or thousands for each match.  At this point, we’ll start using Awk to separate out the individual values in preparation for sorting and summarizing.  This includes changing the Awk delimiter to get rid of the slashes and colons.

grep –i inbound logfile | grep –i tcp | awk ’{print $5, $7}’| awk –F : ’{print $2, $3}’ \

| awk –F / ’{print $1, $2, $3}’ | awk ’{print $1, $2, $4, $5}’

62.224.141.203 1226 192.168.87.172 23
Note the use of the “\” character to allow us to break the line (which is getting long) into multiple parts. 

At this point, for a typical inbound packet, the destination port is often  (but not always) the one that’s interesting as a target.  Let’s ignore the source port which may (or may not) change, because telnet (TCP 23) is a known target.   That’s fine for the single example above, but even our sample log (Appendix B) has more than we can analyze by casual inspection.

Since a real log would have thousands of entries, we’ll continue with several extractions from our sample log.  We’ll re-arrange the values so that the destination port is first, allowing us to look for targets.

The first two lines build a header in a report file.  Note the “>>” in the second and subsequent lines.  This causes the output text to be appended to the created file TCPin.txt.  The tail –10 command takes only the last 10 lines (if there are that many or more) and gives us a report on the 10 inbound TCP attempts with the highest count.

#!/bin/sh

#TCP inbound extraction script

echo Inbound TCP packets > TCPin.txt

echo Count     DstPort     Destination            Source          SrcPort >> TCPin.txt

grep –i inbound logfile | grep –i tcp | awk '{print $5, $7}' \

| awk –F : '{print $2, $3}' | awk –F / '{print $1, $2, $3}' \

| awk '{printf ”%5s %15s %15s %5s \r\n”, $5,  $4,  $1,  $2}'| sort -k 2M \

| uniq –c | head 5 >> TCPin.txt

A brief excerpt from the output shows that the target TCP port scan was actually not very interesting

   Inbound TCP packets

 Count DstPort  Destination     Source
 1   111  192.168.81.134   63.194.83.123   967

 1  1069  192.168.88.197  213.74.188.106    80

 1    25  192.168.85.112   198.88.224.89 12490   
 1  1091  192.168.84.201  213.74.188.106    25

 1    80  192.168.91.246 194.226.122.135  1671
 1  1217   192.168.91.75  207.46.174.100    21

We see in this short example, three inbound attempts to known ports.  The first one, 25 is interesting because that address is our email server, and port 25 should have been allowed in.  That looks like a problem with email, which needs to be investigated.

The next line, port 80 is an attempt to find a web server.  However, there are no web servers on the subnet in question.  That address space is all workstations.  This assumes that you, the analyst have a good idea of what your network looks like.  Likewise, the 111 port aimed at Sun RPC is a probe.

The last three entries in the excerpt are more interesting.  The source ports are well-known services (HTTP, SMTP and FTP respectively).  In addition, the same server is sending packets for two different services simultaneously.  Not impossible, but if you were to look at the entire listing, there are many more examples, some of which are aimed at subnets not even in use.  This is an attack which would get through a simple filtering router (by masquerading as a reply), but which a stateful firewall rejects.  If nothing else, it’s a good argument against using packet filtering as your sole protection.  If you modify the script above to look for related patterns where the source port is of interest, you can get a better picture of the attack.  The only difference in this script and the one above is the ordering of the source and destination IP addresses and ports.

In real life, where we would separate out the inbound packets according to their characteristics, such as where some destination ports and some source ports are of interest, we would use a PERL script.  This would allow us far more flexibility in manipulating our log files.  A sample PERL script is available at http://www.networkeval.com/downloads.htm.  If you are not already familiar with PERL, it is highly recommended that you learn it.  Try Learning PERL by Randall Schwartz and Tom Christiansen (O’Reilly & Associates).  This scripting language runs (with some variations) on just about all modern platforms: MS Windows, Linux, most commercial Unix platforms, Macintosh,  Next, BeOS, VMS and perhaps others.  See http://www.perl.org or http://www.perl.com for more information.

Outgoing packets can be even more interesting.  We’ll make some minor changes to the destination script above and see what sorts of attempts are being made to get out past the firewall. 

#!/bin/sh

# Outbound TCP report

echo Outbound TCP packets > TCPout.txt

echo Count     DstPort     Destination            Source          SrcPort >> TCPout.txt

grep –i outbound logfile | grep –i tcp | awk '{print $13, “\t”, $12, “\t”, $9}' \

| sort -k 2M | uniq –c >> TCPout.txt

Count DstPort  Destination   Source
 1 9000   195.230.90.26   192.168.82.113

 1 1975   204.201.236.13  192.168.85.241

  1 1755   216.94.197.172  192.168.83.35
 3 3000   202.54.124.18   192.168.91.194

  1 2064   63.97.225.3     192.168.83.9
 2 3000   216.35.64.119   192.168.87.54

  3 3000   206.20.183.121  192.168.91.54
 2 5282   206.154.102.12  192.168.87.179

  1 31895  204.119.118.18  192.168.87.179
 1 8004   216.104.230.124 192.168.91.33

  1 591    208.223.9.15    192.168.83.22
 1 8005   216.200.159.84  192.168.91.33

  2 8005   216.200.159.84  192.168.91.149
 4 8875   64.124.41.17    192.168.82.106

  2 8875   64.124.41.16    192.168.82.106
 2 9090   63.146.119.68   192.168.87.155

The resulting list above shows some interesting destination ports.  Port 591 is formally registered as an alternate HTTP port.  Port 8875 is Napster – The original logs contained thousands of attempts, so management was contacted about the matter.  Port 3000 is an unregistered port for counterbot.com – a free counter for ones web site, if you don’t mind the advertising.  Ports 1975, 1755, 2064 are known to be used for advertising banners and advertising spyware (software that tries to report on user’s activities to a remote server).  Port 31895 is suspicious since many other ports in that general range are in use by trojans and worms of some sort.  The trojans list at http://www.simovits.com/trojans doesn’t list it, but it would be a good idea to make sure that the machine in question is clean with updated anti-virus definitions.  The other ports are most likely alternate HTTP ports or advertising banners.  

This sample log is too small to provide any statistical relevance with respect to actual attacks and likely target systems, and we can’t go much further in that direction with shell scripts.  A PERL script could be designed which would be able to sort out what’s relevant versus what wasn’t, but you’d need to be sure of what you’re looking for. 

Getting the information in a timely manner

So far we've discussed how to get information out of the log files, but haven't discussed how to get this information on a regular, timely basis.  It is necessary to know this kind of information as soon as reasonably possible.  For this, we recommend that logs (not just firewall logs, but all logs) be stored and processed on a daily basis.  The Unix cron utility will be used here so that tasks (scripts, programs, batch files, etc.) can be run on a regularly scheduled basis.  The cron utility allows far more granularity and flexibility than the Windows AT command.  Cronit from nicedata.com will allow NT users to have the same capability.

Our illustration below shows how daily reports can be generated automatically. A cron (or cronit) event renames the syslog data file just before midnight to a filename that includes the date of that day's log file and adds that name to the bottom of a list of similar files.  An example would be Feb07-2001.log.  Then, the logging service is restarted to begin the new day's logs with the default logfile name. Note that some firewall vendors are providing software with which to schedule maintenance and analysis activities. 

#!/usr/bin/sh

# Rename the daily log file

date +%b%d-%C%y| awk '{print "/var/adm/syslog/”$1”.log”}' \

| xargs mv /var/adm/syslog/syslog.log > /dev/null

date +%b%d-%C%y| awk '{print "/var/adm/syslog/”$1”.log”}' >> /var/adm/syslog/loglist

kill –HUP ‘cat /var/run/syslog.pid`

You need a daily report.  The script below uses only the example of TCP inbound packets.   We'll then add more sections to it to take care of our other four cases (TCP outbound, UDP inbound, UDP outbound, ICMP inbound) by using other specific scripts with appropriately named output files.  Then we'll have the system email the summary report to us so that it's one of the first things we see in the morning when opening our email.  Note that there are a number of command line email utilities for use with various systems aside from SMTP (Unix standard – usually called mailx).  Microsoft Exchange has one, as do some others.

#!/bin/sh

# TCP Inbound Attempts

rm –rf TCPin

echo Inbound TCP packets >> TCPin

echo ”Count     Source         Destination           Port” >> TCPin

# Get the name of the previous day’s logfile from the list (above)

tail –1 loglist | xargs grep –i inbound | grep –i tcp | awk '{print $6, $8}' \

| awk –F / '{print $1, $2, $3}' | awk '{print $1, $3, $4}' \

| sort | uniq –c | sort | tail –10 >> TCPin

#!/bin/sh

# Clean up the previous day's reports

rm –rf daily.report

date | awk '{print "Firewall Report for ", $2, $3}' > daily.report

# Put the script sections for the other inbound, outbound, and ICMP 

# packets here all of them appending their output to daily.report.

cat TCPin >> daily.report

cat UDPin >> daily.report

cat TCPout >> daily.report

cat UDPout >> daily.report

# Then mail it out to the administrators.

mailx –m –s "Daily Firewall Reports" < daily.report admin@org.org 

Looking for overall patterns

From time to time, you'll want to run more detailed analyses based on what you see in the daily summaries.  Or you may simply see something odd about an outside or inside IP address and want to know if there are any other events related to that address.  These can be automated as well simply by using the data in the daily report as input on what to search for in the log files.

Spend time and effort investigating not just anomalies, but anything you don't understand. Then look at anything potentially related to those things you don't understand
.  If you do this, you will be surprised what what you find and what you learn.  If you want to learn more about attack signatures and related information look at insecure.org, whitehats.com, informit.com and the trojans database on simovits.com among others.

Harold Geneen (late retired CEO of ITT Industries) said of watching financial data "The drudgery of the numbers will set you free".  It turns out that this also applies to many other professions.  This may be paraphrased as "The drudgery of understanding the details will set you free".  Once you have spent time studying enough of log files (of varying sorts), you will be able to spot anomalies with relatively little trouble.  Potential problems will jump out at you once you've trained your mind to recognize what these various reports mean and imply.  To further follow Geneen's model, an individual firewall log entry by itself may not have much meaning.  It's that log entry and dozens, hundreds or thousands like it in one or more of different characteristics that will expose a pattern.

Looking for Trends and Patterns

So far, we've looked at individual events – i.e., what external address is looking at what internal address, and on what port (service) it's being addressed.  Now let's expand that to find out if there are wider patterns that would show either a pattern to the attackers (if they actually are attackers), or a pattern to the targets.  For example, scan the logfile for all incoming TCP packets, print out and sort only the destination address and destination port without the source IP address.  This may reveal a pattern that shows that over time, particular addresses being scanned on a wide range of ports by (possibly) different source addresses.  The “TCPin” script above would be used except that the order in which the three important values (source IP, destination IP, destination port) are printed out in the order destination IP, destination port.  This is sorted as shown below to a file named TCPscan.txt.  This will show if someone is trying to do a slow distributed scan of your network by producing results by target, in port order, with the querying systems shown last.  This will also show overlaps by different parties.  The ‘awk ’{printf “%3.3d”}’ used below forces the printing of zeroes to fill out the three digit space in each IP address field, so that when the data is sorted, the addresses are listed in actual numerical order.

#!/bin/sh

# TCP Targets script

echo Inbound TCP Targets > TCPtargets.txt

echo ”Count Destination           Port” >> TCPtargets.txt

grep –i inbound logfile | grep –i tcp | awk '{print $5, $7}' \

| awk –F / '{print $1, $2, $3}' | awk –F : '{print $2, $3, $4}' \

| awk ’{print $4, ”\t”, $5}’ | awk –F . ’{print $1, $2, $3, $4}’ \

| awk '{printf "%3.3d.%3.3d.%3.3d.%3.3d %5d\r\n", $1, $2, $3, $4, $5 }’\

| sort | uniq –c |  tail –15 >> TCPtargets.txt

The resulting report might look like this (columns save space here, output would be a single column):

Inbound TCP Targets

Count Destination     Port

   1 192.168.080.004  1264
   1 192.168.080.106  1264
   1 192.168.081.134   111

   2 192.168.080.039 12345
   1 192.168.080.133 35312
   1 192.168.081.178   515

   3 192.168.080.039 27374
   1 192.168.081.030    80
   1 192.168.081.192 14363

   1 192.168.080.060 62904
   1 192.168.081.030  8080
   1 192.168.081.192 44575

   1 192.168.080.105   515
   1 192.168.081.064 54939
   1 192.168.081.229  8889 

From this pattern, we might see that someone was doing (one form of) a stealth scan where different source addresses are used to avoid detection.  The "scanners" pool their data together later on to build a map of what was found.  The IP address 192.168.80.39 actually got five attempts in our sample log file. Therefore, we go back to the original logfile to do an extraction of all traffic attempts against this particular server.  By doing an extraction for all inbound traffic (TCP, UDP, ICMP) to this server, in a similar manner to the TCP one above, we see the following results:

grep –i 192.168.80.39 logfile | awk '{print $5, $7}' \

| awk –F / '{print $1, $2, $3}' | awk –F : '{print $2, $3, $4}' \

| awk ’{print $1, $4, $5}’ 

211.110.116.211 192.168.80.39 27374
211.110.116.211 inside 192.168.80.39 12345

211.110.116.211 192.168.80.39 27374
211.110.116.211 inside 192.168.80.39 12345

211.110.116.211 192.168.80.39 27374


This particular hacker is looking for NetBus and SubSeven compromised systems.  It could be other trojans, but those destination port numbers are the most common for those described.

If you want to find out the source addresses for all incoming attempts, we modify the script slightly.

#!/bin/sh

# Inbound TCP Source Report

echo Inbound TCP sources > TCPsources.txt

echo Count     Source Port >> TCPsources.txt

grep –i inbound logfile | grep –i tcp | awk '{print $5, $7}' \

| awk –F / '{print $1, $2, $3}' | awk –F : '{print $2, $3, $4}' \

| awk ’{print $1}’ | awk –F . ’{print $1, $2, $3, $4}’ \

| awk '{printf "%3.3d.%3.3d.%3.3d.%3.3d\r\n", $1, $2, $3, $4 }’\

| sort | uniq –c >> TCPsources.txt

 4 024.067.073.209
  1 195.022.228.148 
  2 212.110.024.193

 1 063.194.083.123
  4 195.066.170.008
 16 213.074.188.106

 1 064.154.061.232 
  4 198.088.224.089
  2 216.034.088.200

 1 064.217.074.185
  4 199.172.144.119
  1 216.087.001.092

 1 148.122.015.057
  3 202.103.095.160
  6 216.122.066.070

Without extracting specifics, some examples noted in the past are worth discussing.  The UDP 137 (NetBIOS Name) probes (of which we get hundreds every day) are not as interesting as a probe at port 500.  This is ISAKMP (Internet Security Association Key Management Protocol) also called IKE (Internet Key Exchange).  This protocol is used (among other things) for the authentication phase of VPN servers.  A hacker compromising a VPN server could (potentially) bypass your firewall entirely.  A flood of outbound packets on port 139 TCP (NetBIOS session) alerted us to the fact that the QAZ worm had infected some of our systems.  Constant outbound attempts to port 137 (NetBIOS name) from 192.168.9.41 (Should have been 192.168.92.41) showed us that some desktop machine was misconfigured with a hard coded IP address (DHCP would not have done that). This may be surprising, but it remained in this state for almost four weeks before disappearing from the daily logs.  A lot of system ills are detected only in firewall logs, rather than by the end users.  Much of the value of analyzing logs is in learning about identifying patterns and deriving meaning from them.

How much data can your firewall provide?

Are you logging everything?  This includes not only dropped packets, but all packets (or transactions) that pass through your firewall.  How detailed are your firewall logs?  Some routers and other network devices used as firewalls with filters or ACL’s (Access Control Lists) merely give you a count of dropped packets, or a generic notification for each packet dropped

To get the most out of it, a firewall log entry should contain (at least) the following information: 

· Accurate time and date stamp (NTP or SNTP synchronized)

· Packet direction (inbound, outbound)

· Source IP address

· Destination IP address

· Protocol (TCP, UDP, ICMP, IPSec, GRE, etc.) 

· Port numbers (TCP, UDP) for both source and destination ports, 

· Type values (ICMP). 

Both full logs and drop-only logs can be useful.  Firewalls that log everything can take up a lot of disk space, and, depending on organizational policy and/or published policies could be construed as intrusive monitoring
.  Check with your HR and/or legal departments to see if this affects your organization.  In some cases, as long as you only access the data to deal with specific problems (as opposed to analyzing where everyone goes), then there's seldom an issue.  If it’s handled properly (meaning anonymously) detailed logs can be used to identify “Top 10” Internet users without necessarily specifying names or sites. 

How to identify what shows (What is the meaning of each log entry)

We’ve discussed some individual services (Telnet, FTP, HTTP etc.), but there are many more ports in use out there than any of us can readily memorize, or are likely to learn through casual exposure.  If the port number for which you are looking is not known, here are some resources to help identify them.  Bear in mind that in general, it’s the destination port number (for TCP and UDP) that is of interest most of the time.  The source port can still be useful, but since most attacks (what we care most about) are aimed at some service (legitimate or otherwise), we’ll concentrate on the destination ports as representing services of some interest.

Many port numbers are registered with iana.org (Internet Assigned Numbers Authority)  http://www.isi.edu/in-notes/iana/assignments/port-numbers.  These cover many well-known applications.

There are many other ports, which are commonly used, but are not formally registered. Some of them use ports which are unregistered, and some of them overlap other (registered) applications, but have no connection whatsoever.  As an ongoing project  (read: work in progress) we are maintaining a list at http://www.networkeval.com/downloads.htm 

This list shows a number of ports used in banner ads, spyware and other undocumented, but widespread uses.  Lately, IANA has also been documenting some of these in their port lists with comments indicating unofficial use or potential port conflicts.

Trojans and worms also take up a number of both registered ports (by “front-ending” well-known applications) and non-registered ports. Many of them are listed at: http://www.simovits.com/trojans/trojans.html.  This list is maintained by Joakim Von Braun as a public service.  He has graciously allowed posting of his URL here.

If none of these sources help, then some detective work is in order.  Using a port scanner (mostly for TCP) on the target system, see if the port(s) registered on the firewall log entry actually exists on any of your systems.  If it does, then from a command line prompt issue a “netstat –a” (works on Unix and Windows NT and Windows 2000) and look for ports shown in the LISTENING state.  Sometimes the port number will simply be listed as a number, other times the actual name (or abbreviation) of the service may be displayed which will give you a clue as to its nature.

If you have time, and a system which can safely be used for experimenting, try alternating “netstat –a” with shutting down services one at a time, and observing which ports stop listening. 
Conclusion
When they are saved in an accessible, readable location and format, firewall logs can be a rich source of information about the state of your Internet traffic and your internal systems.  You can get information about:

· Would-be attackers

· Routing problems

· Ongoing compromises (full logging only)

· Broken (misconfigured) systems

· Indicators of a need to review the firewall’s ruleset

· Infections and infestations from worms and spyware

· User browsing habits (full logging only)

· Internet based applications in use (full logging only)

Log files should be saved with the date as part of the filename for easy access.  They should be processed and analyzed automatically on a daily basis and in more detail as events warrant.  The common Unix utilities can be used to prune large amounts of extraneous data to get the information in your firewall logs down to a manageable size for analysis.  Any sort of serious statistical analysis however will have to be done with commercial software, homegrown programs or PERL scripts.  The data reduction can be done by commercial programs, shell scripts (or batch files), or PERL scripts.  To make sure that these reports and analyses are actually read, summaries should be emailed to administrators on a daily basis.  These are generally not full reports, but rather meant as tip-of-the-iceberg highlights to bring your attention to whatever potential trouble awaits.

It’s well worth the time and trouble to learn both what a normal baseline of activity looks like for your network (as seen by your firewall logs), and the meaning of the various events seen in the log files.  Maintaining this practice as an ongoing discipline will add considerably to your store of information about network events and your judgement as to how to handle them.

If you've run some of the sample analyses in this paper against your own logs and don't get as much data as you'd like, there are some configuration changes you can make to improve the amount of data available.  Best practices in firewall administration will provide you with better information about your network.

Ideally, firewalls should operate on the premise that everything not explicitly permitted is forbidden.  If your firewall only blocks certain specific incoming ports and addresses, and lets others through, then there is a lot of information you’re missing.  Likewise, simply allowing all outbound traffic means that you have no control over what people (or more to the point, their machines) do over the Internet.  Rearranging the permissions (rule sets) so that the only traffic permitted through is what you've explicitly authorized will result in a much more complete picture of who is trying to get into your systems who shouldn't be.  

Likewise, if outbound connections are permitted with few or no restrictions, then it's difficult to tell how much of the outbound traffic is legitimate versus rogue or misdirected traffic.  Worms, Trojan Horses, spyware, and other rogue applications may be notifying someone on the outside world that you have resources available or reporting on internal activity to outsiders. Rogue applications are considered to be those that you wouldn’t want on your network if you knew they were there. 

You need to be constantly vigilant about your systems.  New attacks and ways of getting at your systems are being invented every day.  Devoting at least part of every day to analyzing, or automating the analysis of your firewall logs will provide real rewards in terms of the security of your network, and your professional growth.

Appendix A

A few common Unix utilities and simple usages are described here.  There is more to these than is described here, but the focus here is on extracting data from firewall (and other) logs, and is only meant to provide support for our examples.

Awk – Used for selecting fields out of a line of text and then outputting them in arbitrary order with optional additional formatting.  Syntax can be moderately complex, but these examples will use only simple expressions.  The default delimiter is whitespace, but can be specified as almost any character.  The $1, $3, etc. refer to the parameter count passed to that instance of awk.  In our example below, the sixth “word” in the log file entry, after being printed to the output by awk now becomes the first “word” to the next instance of awk.  The use of ”-F /“ in the awk statement below allows us to use the specified character “/” as the separator or delimiter for the string being processed.   In this case, it allows us to drop the incoming IP address’s source port.

Grep – Selects matching or non-matching strings from a large file based on a pattern provided.  Grep –i ignores case and grep –v reverses the search by only outputting those lines that do NOT contain a match for the specified pattern.  Similar to FIND on Windows platforms, and can be used for the same purpose.

Head and Tail – Displays the first and last (respectively) n lines from a specified source (file or pipe).  The default is 10 lines.

kill –HUP – This allows us to restart a particular process much like "net stop xxx" and "net start xxx" on a Windows platform. 

Mv – (Move) this is a Unix version of Rename.  It can be used merely to change a file's name or to change its location within a given file system.

ps – Process Status.  This allows the user (or a script) to get the process id of all processes on the system.  Used with grep, and awk it allows us to get a process id for any particular process.

Sed – (Stream Editor) allows replacement of a given character stream with an alternate character stream.

Sort – Places the list in forward or reverse ASCII order.  There are too many variations on capabilities in different versions of sort to further describe details like specific field sorting and keys.

Tee – used to split the data stream used here into two streams.  Usually one copy goes to a file, and the other continues through the redirected or piped output.

Uniq – Eliminates duplicate adjacent entries in a list.  When used with sort, it can eliminate all duplicate items in a list.  When used with the “-c” option, it will also provide a count of matching lines, which have been found with a single instance of each unique line.

Xargs – This is used to take piped output from another process and use it as a parameter or argument to a new command.  This allows us to extract a single piece of data from a long string and use that one piece as a parameter.

Redirection and Inter-process data passing use the “<” and “>“ characters to redirect input and output to and from files.  The “|“ character (called “pipe”) allows the user to chain the commands above into a variety of report generation and data extraction scripts.

Appendix B – Sample Firewall Log
Deny inbound tcp src outside:213.74.188.106/80 dst inside:192.168.90.219/2052        

Deny inbound tcp src outside:213.74.188.106/25 dst inside:192.168.85.214/2357        

Deny inbound tcp src outside:213.74.188.106/80 dst inside:192.168.88.197/1069        

Deny inbound tcp src outside:213.74.188.106/25 dst inside:192.168.93.211/2298        

Deny inbound udp src outside:194.201.4.21/138 dst inside:192.168.92.204/138        

Deny inbound tcp src outside:213.74.188.106/80 dst inside:192.168.87.205/1395        

Deny inbound tcp src outside:212.110.24.193/1192 dst inside:192.168.81.30/80        

Deny inbound tcp src outside:212.110.24.193/1248 dst inside:192.168.81.30/8080        

Deny inbound tcp src outside:63.194.83.123/967 dst inside:192.168.81.134/111        

Deny inbound tcp src outside:195.66.170.8/6667 dst inside:192.168.85.32/1409        

Deny inbound tcp src outside:213.74.188.106/80 dst inside:192.168.85.214/2135        

Deny inbound tcp src outside:209.112.47.7/2616 dst inside:192.168.89.174/1008        

Deny inbound tcp src outside:211.110.116.211/3917 dst inside:192.168.80.39/27374        

Deny inbound tcp src outside:211.110.116.211/3918 dst inside:192.168.80.39/12345        

Deny inbound tcp src outside:211.110.116.211/3917 dst inside:192.168.80.39/27374        

Deny inbound tcp src outside:211.110.116.211/3918 dst inside:192.168.80.39/12345        

Deny inbound tcp src outside:211.110.116.211/3917 dst inside:192.168.80.39/27374        

Deny inbound tcp src outside:216.122.66.70/61654 dst inside:192.168.83.223/31713        

Deny inbound tcp src outside:213.74.188.106/80 dst inside:192.168.89.200/2399        

tcp connection denied by outbound list 1 src 192.168.87.179 1103 dest 206.154.102.12 5282  

Deny inbound udp src outside:194.201.4.19/871 dst inside:192.168.91.39/138        

udp connection denied by outbound list 1 src 192.168.91.39 1031 dest 18.146.234.10 38293  

udp connection denied by outbound list 1 src 192.168.91.39 1031 dest 64.138.25.85 38293  

Deny inbound tcp src outside:151.200.27.97/31337 dst inside:192.168.81.178/515        

Deny inbound tcp src outside:210.61.70.1/10101 dst inside:192.168.80.105/515        

tcp connection denied by outbound list 1 src 192.168.87.179 1171 dest 206.154.102.12 5282  

tcp connection denied by outbound list 1 src 192.168.91.54 3615 dest 206.20.183.121 3000  

Deny inbound tcp src outside:194.226.122.135/4465 dst inside:192.168.91.59/80        

tcp connection denied by outbound list 1 src 192.168.89.14 1042 dest 206.154.102.12 5282  

Deny inbound tcp src outside:216.122.66.70/56408 dst inside:192.168.84.116/16496        

Deny inbound tcp src outside:195.66.170.8/6667 dst inside:192.168.90.71/1409        

tcp connection denied by outbound list 1 src 192.168.87.35 1028 dest 64.4.13.17 1863  

Deny inbound tcp src outside:161.142.78.19/26 dst inside:192.168.88.15/1538        

tcp connection denied by outbound list 1 src 192.168.87.35 1028 dest 64.4.13.17 1863  

Deny inbound udp src outside:172.140.198.196/68 dst inside:192.168.85.12/67        

Deny inbound tcp src outside:206.18.0.83/36915 dst inside:192.168.80.200/80        

Deny inbound tcp src outside:161.142.78.19/67 dst inside:192.168.87.215/1980        

Deny inbound tcp src outside:213.74.188.106/80 dst inside:192.168.83.220/1549        

Deny inbound tcp src outside:206.18.0.83/36915 dst inside:192.168.80.200/80        

tcp connection denied by outbound list 1 src 192.168.91.23 1111 dest 216.120.42.198 1755  

tcp connection denied by outbound list 1 src 192.168.89.14 1094 dest 206.154.102.12 5282  

Deny inbound tcp src outside:213.74.188.106/80 dst inside:192.168.90.212/2412        

udp connection denied by outbound list 1 src 192.168.89.14 137 dest 52.85.33.216 137  

tcp connection denied by outbound list 1 src 192.168.87.179 1761 dest 208.147.88.120 554  

tcp connection denied by outbound list 1 src 192.168.91.149 1349 dest 216.200.159.84 8005  

Deny inbound tcp src outside:216.122.66.70/35304 dst inside:192.168.81.192/7451        

Deny inbound tcp src outside:6.38.98.24/18650 dst inside:192.168.95.14/835        

Deny inbound tcp src outside:207.46.174.100/80 dst inside:192.168.91.75/1210        

Deny inbound tcp src outside:207.46.174.100/80 dst inside:192.168.91.75/1209        

Deny inbound tcp src outside:207.46.174.100/21 dst inside:192.168.91.75/1212        

Deny inbound tcp src outside:207.46.174.100/21 dst inside:192.168.91.75/1211        

Deny inbound tcp src outside:198.88.224.89/12490 dst inside:192.168.85.112/25        

tcp connection denied by outbound list 1 src 192.168.91.149 1418 dest 216.200.159.84 8005  

Deny inbound tcp src outside:198.88.224.89/12490 dst inside:192.168.85.112/25        

Deny inbound tcp src outside:198.88.224.89/12490 dst inside:192.168.85.112/25        

tcp connection denied by outbound list 1 src 192.168.82.106 2066 dest 64.124.41.17 8875  

Deny inbound tcp src outside:209.112.47.7/4314 dst inside:192.168.86.139/1008        

tcp connection denied by outbound list 1 src 192.168.82.106 2076 dest 64.124.41.16 8875  

Deny inbound tcp src outside:198.88.224.89/12490 dst inside:192.168.85.112/25        

tcp connection denied by outbound list 1 src 192.168.87.179 2033 dest 204.119.118.18 31895  

Deny inbound tcp src outside:211.114.139.193/27921 dst inside:192.168.84.14/23897        

Deny inbound tcp src outside:198.88.224.89/12869 dst inside:192.168.85.112/25        

udp connection denied by outbound list 1 src 192.168.87.166 1035 dest 216.111.165.10 53  

Deny inbound tcp src outside:198.88.224.89/12869 dst inside:192.168.85.112/25        

udp connection denied by outbound list 1 src 192.168.87.166 1045 dest 216.111.165.10 53  

Deny inbound tcp src outside:198.88.224.89/12869 dst inside:192.168.85.112/25        

tcp connection denied by outbound list 1 src 192.168.91.149 1551 dest 216.200.159.84 8005  

tcp connection denied by outbound list 1 src 192.168.82.106 1113 dest 64.124.41.16 8875  

tcp connection denied by outbound list 1 src 192.168.91.149 1643 dest 216.200.159.84 8005  

Deny inbound tcp src outside:213.74.188.106/25 dst inside:192.168.84.201/1091        

tcp connection denied by outbound list 1 src 192.168.87.54 1487 dest 216.35.64.119 3000  

tcp connection denied by outbound list 1 src 192.168.91.33 1384 dest 216.104.230.124 8004  

Deny inbound tcp src outside:208.5.10.186/7 dst inside:192.168.92.89/3072        

Deny inbound tcp src outside:202.103.95.160/80 dst inside:192.168.90.45/1409        

Deny inbound tcp src outside:216.87.1.92/80 dst inside:192.168.91.251/2545        

Deny inbound tcp src outside:195.66.170.8/6667 dst inside:192.168.80.4/1264        

Deny inbound tcp src outside:216.34.88.200/80 dst inside:192.168.91.67/1380        

Deny inbound tcp src outside:195.66.170.8/6667 dst inside:192.168.95.110/1409        

tcp connection denied by outbound list 1 src 192.168.82.106 1489 dest 64.124.41.17 8875  

Deny inbound tcp src outside:64.154.61.232/6669 dst inside:192.168.85.80/1024        

tcp connection denied by outbound list 1 src 192.168.82.106 1497 dest 64.124.41.17 8875  

tcp connection denied by outbound list 1 src 192.168.87.54 1615 dest 216.35.64.119 3000  

Deny inbound tcp src outside:216.122.66.70/46957 dst inside:192.168.81.229/8889        

tcp connection denied by outbound list 1 src 192.168.83.22 3335 dest 208.223.9.15 591  

tcp connection denied by outbound list 1 src 192.168.91.54 4153 dest 206.20.183.121 3000  

Deny inbound tcp src outside:213.74.188.106/25 dst inside:192.168.84.209/1332        

Deny inbound tcp src outside:165.121.34.135/1099 dst inside:192.168.85.112/1060        

Deny inbound tcp src outside:216.34.88.200/80 dst inside:192.168.91.212/1902        

tcp connection denied by outbound list 1 src 192.168.82.106 1656 dest 64.124.41.17 8875  

Deny inbound tcp src outside:148.122.15.57/80 dst inside:192.168.84.102/1264        

Deny inbound tcp src outside:194.226.122.135/1671 dst inside:192.168.91.246/80        

Deny inbound tcp src outside:24.67.73.209/35304 dst inside:192.168.81.192/44575        

tcp connection denied by outbound list 1 src 192.168.91.194 1622 dest 202.54.124.18 3000  

udp connection denied by outbound list 1 src 169.254.209.43 137 dest 169.254.255.255 137  

tcp connection denied by outbound list 1 src 192.168.91.194 1641 dest 202.54.124.18 3000  

tcp connection denied by outbound list 1 src 192.168.91.54 4351 dest 206.20.183.121 3000  

Deny inbound tcp src outside:24.67.73.209/35304 dst inside:192.168.81.192/14363        

tcp connection denied by outbound list 1 src 192.168.82.113 2762 dest 195.230.90.26 9000  

tcp connection denied by outbound list 1 src 192.168.91.194 1651 dest 202.54.124.18 3000  

Deny inbound tcp src outside:24.67.73.209/40433 dst inside:192.168.91.81/341        

Deny inbound tcp src outside:24.67.73.209/35304 dst inside:192.168.81.64/54939        

Deny inbound tcp src outside:168.191.85.78/1072 dst inside:192.168.85.112/1060        

tcp connection denied by outbound list 1 src 192.168.83.9 2217 dest 63.97.225.3 26101  

Deny inbound tcp src outside:216.122.66.70/56145 dst inside:192.168.93.255/34506        

Deny inbound tcp src outside:211.114.139.193/61654 dst inside:192.168.83.223/51169        

Deny inbound udp src outside:12.89.10.3/68 dst inside:192.168.85.12/67        

Deny inbound udp src outside:148.71.123.122/1040 dst inside:192.168.88.1/5632        

Deny inbound udp src outside:148.71.123.122/1040 dst inside:192.168.88.3/5632        

Deny inbound udp src outside:148.71.123.122/1040 dst inside:192.168.88.4/5632        

Deny inbound udp src outside:148.71.123.122/1040 dst inside:192.168.88.6/5632        

Deny inbound udp src outside:148.71.123.122/1040 dst inside:192.168.88.7/5632        

Deny inbound udp src outside:148.71.123.122/1040 dst inside:192.168.88.9/5632        

Deny inbound udp src outside:148.71.123.122/1040 dst inside:192.168.88.10/5632        

Deny inbound udp src outside:148.71.123.122/1040 dst inside:192.168.88.12/5632        

Deny inbound udp src outside:148.71.123.122/1040 dst inside:192.168.88.13/5632        

Deny inbound udp src outside:148.71.123.122/1040 dst inside:192.168.88.15/5632        

Deny inbound udp src outside:148.71.123.122/1040 dst inside:192.168.88.16/5632        

Deny inbound udp src outside:148.71.123.122/1040 dst inside:192.168.88.17/5632        

Deny inbound udp src outside:148.71.123.122/1040 dst inside:192.168.88.18/5632        

Deny inbound udp src outside:148.71.123.122/1040 dst inside:192.168.88.19/5632        

Deny inbound udp src outside:148.71.123.122/1040 dst inside:192.168.88.20/5632        

Deny inbound udp src outside:148.71.123.122/1040 dst inside:192.168.88.21/5632        

Deny inbound udp src outside:148.71.123.122/1040 dst inside:192.168.88.22/5632        

Deny inbound udp src outside:148.71.123.122/1040 dst inside:192.168.88.23/5632        

Deny inbound udp src outside:148.71.123.122/1040 dst inside:192.168.88.24/5632        

Deny inbound udp src outside:148.71.123.122/1040 dst inside:192.168.88.25/5632        

Deny inbound udp src outside:148.71.123.122/1040 dst inside:192.168.88.26/5632        

Deny inbound udp src outside:148.71.123.122/1040 dst inside:192.168.88.27/5632        

Deny inbound udp src outside:148.71.123.122/1040 dst inside:192.168.88.28/5632        

Deny inbound udp src outside:148.71.123.122/1040 dst inside:192.168.88.29/5632        

Deny inbound udp src outside:148.71.123.122/1040 dst inside:192.168.88.30/5632        

Deny inbound tcp src outside:199.172.144.119/80 dst inside:192.168.91.56/42983        

tcp connection denied by outbound list 1 src 192.168.91.33 1949 dest 216.200.159.84 8005  

Deny inbound tcp src outside:199.172.144.119/80 dst inside:192.168.91.56/42983        

Deny inbound tcp src outside:199.172.144.119/80 dst inside:192.168.91.56/42983        

Deny inbound tcp src outside:213.74.188.106/80 dst inside:192.168.82.212/1165        

Deny inbound tcp src outside:199.172.144.119/80 dst inside:192.168.91.56/42983        

tcp connection denied by outbound list 1 src 192.168.85.241 1836 dest 204.201.236.13 1975

Appendix C – Firewall Rule Set

(Outbound requests imply destination port specified and inverse for returning replies)

Deny outbound ICMP 8 149.1.1.0 255.255.255.0
#Block Ping requests to TimeSink (Spyware)

Deny outbound TCP       149.1.1.0 255.255.255.0
#Block TCP traffic to TimeSink (Spyware)

Deny outbound UDP      149.1.1.0 255.255.255.0
#Block UDP traffic to TimeSink (Spyware)

Deny outbound ICMP    194.87.6.0 255.255.255.0
#Block traffic to Russian net per SANS

Deny outbound TCP       194.87.6.0 255.255.255.0
#Block traffic to Russian net per SANS

Deny outbound UDP      194.87.6.0 255.255.255.0
#Block traffic to Russian net per SANS

Permit outbound TCP 80


# Well-known HTTP usage ports

Permit outbound TCP 81


# Well-known HTTP usage ports

Permit outbound TCP 82


# Well-known HTTP usage ports

Permit outbound TCP 88


# Well-known HTTP usage ports

Permit outbound TCP 888


# Well-known HTTP usage ports

Permit outbound TCP 8000

# Well-known HTTP usage ports

Permit outbound TCP 8001

# Well-known HTTP usage ports

Permit outbound TCP 8002

# Well-known HTTP usage ports

Permit outbound TCP 8080

# Well-known HTTP usage ports

Permit outbound TCP 8088

# Well-known HTTP usage ports

Permit outbound TCP 8888

# Well-known HTTP usage ports

Permit outbound TCP 21


#FTP (FTP Port 20 is opened dynamically)

Permit outbound TCP 22


#SSH (Secure Shell)

Permit outbound TCP 23


#Telnet

Permit outbound TCP 25 Mail_Server
#SMTP allowed ONLY for the mail server

Permit outbound TCP 443


#Secure HTTP (https)

Permit outbound TCP 110


#POP3 (Post Office Protocol) (Users may READ their mail)

Permit outbound TCP 119


#NNTP (Network News)

Permit outbound TCP 70


#Gopher

Permit outbound UDP 33000-34000
#Unix based Traceroute

Permit outbound UDP 53 NameServer
#Outbound DNS Lookups

Permit outbound ICMP 8


#ICMP Echo Request

Permit outbound TCP 123
Server

#NTP (Network Time Protocol – Used by central server)

Deny outbound TCP


#Block all other access

Deny outbound UDP


#Block all other access

Deny outbound ICMP


#Block all other access

(Inbound requests assume all addresses unless specified)

Permit inbound ICMP 0


#ICMP Echo Reply

Permit inbound ICMP 11


#ICMP Time Exceeded (Traceroute Replies)

Permit inbound TCP 25 MailServer

#Inbound email

Permit inbound TCP 80 WebServer

#Public Web Server protected by Firewall

Permit inbound TCP 21 FTPServer

#Public FTP server protected by Firewall

�PAGE \# "'Page: '#'�'"  ��	What about disposition (DENY or ALLOW) and direction? I filter my logs first on DENY/IN, for example. 


�PAGE \# "'Page: '#'�'"  �


�PAGE \# "'Page: '#'�'"  ��	Not just someone, but any skilled and motivated attacker.


�PAGE \# "'Page: '#'�'"  ��	Changed to comment that this is an illustration of the mechanisms


�PAGE \# "'Page: '#'�'"  ��	You may want to mention online sources for inquiring or investigating whether what you are seeing is a known signature of an attack (sequence)?


�PAGE \# "'Page: '#'�'"  ��	What about mentioning ways to digest or perform data reduction on such voluminous data? It’s pretty simple to take a log and reduce 256 instances of the same event, by adding a counter to the log record, and time framing it. Of course, doing so renders the log less useful as evidentiary material, but you might do this for trending and performance.





Page 1 of 1

